
Machine Learning at Berkeley NMEP Lecture 6: Transformers Fall 2024

By: Tejas Prabhune, Ayushi Batwara, Tim Xie, Derek Xu

Overview
In the last two lectures, we’ve thoroughly covered the popular Transformer architecture for
sequence-to-sequence modeling, representation learning, and autoregressive generation. Before we
jump into HW 3: Transformers, let’s warm up with reviewing and implementing the logic of the
architecture in pseudocode.

At any point in time, feel free to review both the Attention Is All You Need paper or the Homework
3 informational document that was sent to you. We highly recommend not using LLM-based tools
for this assignment—this is purely for your understanding, and you’ll greatly benefit from thinking
through all the nitty-gritty details yourself.

If you have ANY questions at all, do not hesitate to ask any Edu staff! We hope this will aid your
intuition of the architectural concepts before starting to code!

Background Questions
1. What is the input to the Encoder?

2. What are the two main components in an Encoder layer?

a. Briefly describe what they do.

3. What is the output of the Encoder?

Multi-Head Attention
You are given the following class and __init__ function signature on the next page.

First, briefly answer the following questions about Multi-Head Attention:

1. What do Q, K, and V represent?

2. What are the shapes of the Q, K, and V matrices when first inputted into the Multi-Head Attention
module? Since we want to repeat this operation in parallel num_heads times, how should we
project (i.e., apply a linear transformation to) each Q, K, and V matrices? What will be the shape
after the projections?

Note: Assume that you have two values: qk_length and value_length that represent the length
of your query/key embeddings and value embeddings. You can generalize this length to be
vec_length, which will be qk_length or value_length based on if you are working on Q, K or V.

Note: While during lecture it makes sense to consider our embeddings as having a size of
(𝐵,𝐶, 𝑇), we prefer to use the inverse format of (𝐵, 𝑇 , 𝐶) in code (hint: look at the
torch.nn.Linear documentation for why this may be the case—if unclear, please ask!).

1

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Machine Learning at Berkeley NMEP Lecture 6: Transformers Fall 2024

3. After these projections, we need to make each of the Q, K, V tensors suitable for parallel processing
of each head. To do this, we use a split_heads function. What are the initial and final shapes of
Q, K, and V tensors for this function?

4. Why do we scale the output of the dot product attention by a factor of 1√
qk_length? What would

happen if we didn’t have this scaling factor?

5. After we have the scaled dot-product attention result (reminder: shape will be
(𝐵, num_heads, 𝑇 , value_length) since we’ve also multiplied with the V tensor), we need to
complete the Concat and Linear part of the module. We implement the Concat part as a
combine_heads function. What will be the shape before and after this function?

Now based on your understanding of Multi-Head Attention layers, write the remaining pseudocode
for the __init__ function:

class MultiHeadAttention(nn.Module):
 def __init__(self,
 num_heads: int,
 embedding_dim: int,
 qk_length: int,
 value_length: int
):
 """
 The Multi-Head Attention layer will take in Q, K, and V
 matrices and will output an attention matrix of shape <TODO>.

 First, Q, K, and V should be projected to have
 a shape of (B, T, C) where C = num_heads * qk_length. You are
 then expected to split the C dimension into num_heads
 different heads, each with shape (B, T, qk_length).

 Next, you will compute the scaled dot-product attention
 between Q, K, and V.

 Finally, you will concatenate the heads and project the
 output to have a shape of (B, T, C).
 """
 super().__init__()

 self.num_heads = num_heads
 self.embedding_dim = embedding_dim
 self.qk_length = qk_length
 self.value_length = value_length

 # Define layers you'll need in the forward pass (hint: there are 4 lol)
 # Note: these are learnable parameters and will change
 # throughout the model training process

2

Machine Learning at Berkeley NMEP Lecture 6: Transformers Fall 2024

Recall our discussion about the attention layer and how it performs a “lookup” given a query against
our set of keys. Then, we get the corresponding values based on our lookup. Write the remaining
pseudocode for the scaled_dot_product_attention function:

def scaled_dot_product_attention(self, _________, _________, _________, _________):
 lookup = ___________________________
 scaled_lookup = ___________________________
 attention = ___________________________
 return ___________________________

Write the pseudocode split_heads function:

def split_heads(self, _________, _________) -> torch.Tensor:
 __
 __
 __
 __

Now the combine_heads function:

def combine_heads(self, _________) -> torch.Tensor:
 __
 __
 __
 __

Now that we have all the components for a forward pass through our Encoder, let’s combine them in
our forward function. Write the remaining pseudocode:

def forward(self, _________, _________, _________) -> torch.Tensor:
 # Applying the respective layers to the inputs
 __
 __
 __

 # Preparing the inputs for parallel processing for each attention head
 __
 __
 __

 # Applying the attention layer
 attention = __

 # Combining the mutliple "heads"
 attention = __

 # Applying the respective layer to the attention output
 attention = __

 return attention

3

	Overview
	Background Questions
	Multi-Head Attention

